

Institute of Education, University of London

September 2012

Computer programmers and the “bilingual advantage”: Enhanced

executive control in non-linguistic interference tasks.

Hannah Wright

A dissertation submitted in partial fulfilment of requirements for the degree of

MSc in Child Development

This dissertation may be made available to the general public for borrowing,

photocopying or consultation without the prior consent of the author.

2 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Acknowledgements

I am enormously grateful to all of the participants – programmers and non-programmers

– who gave up their time to make this study happen. Thank you.

I am also indebted to those who helped with participant recruitment – Emma

Mulqueeny, Lawrence Job and Josh Pickett at Young Rewired State; Adam Cohen-

Rose; Tara Bloom; Tracey Herald; Nikki Sims; Adrian Wright and Catherine Erskine –

and to the developers and computer scientists who kindly shared experiences and ideas:

Paul Battley, Duncan Gough, Alex Maccaw, Dr John Murnane and Prof. Richard Noss.

Thank you to my supervisor, Prof. Andy Tolmie, for very helpful feedback throughout.

Sincere thanks to my family and friends, and particularly to Paul Sims – without your

support, this would have been much, much harder.

3 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Abstract

Bilingualism is associated with life-long cognitive advantages. It is well established

that bilinguals perform better at non-verbal tasks requiring enhanced executive control.

Bilinguals typically record faster response times than their monolingual peers; this is

thought to result the development of greater efficiencies in conflict monitoring network,

which develop in response to the additional demands of managing two competing

language systems. The present study investigates whether this “bilingual advantage” is

also associated with the frequent use of computer programming languages. The

performance of 10 professional computer programmers (aged 22–25) and 10 adolescent

computer programmers (aged 14–17) is compared to age-matched and IQ-matched

controls in two executive control tasks. In the Attention Networks Test, as predicted,

programmers recorded faster global reaction times than their monolingual peers; the

difference was significant. In the Stroop colour-word task, programmers recorded

slower reaction times; however, these results were not significant. Overall, the results

suggest that extensive computer programming experience may, like bilingualism, be

associated with enhanced executive control. Whatever the direction of this relationship,

it could have important implications for education; these are discussed, along with areas

for future research.

4 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Table of Contents

Abstract	
 3	

Introduction	
 5	

Overview	
 5	

Part	
 I:	
 Executive	
 control	
 and	
 bilingualism	
 8	

Section	
 II:	
 Computer	
 programming	
 and	
 cognition	
 15	

Section	
 III:	
 The	
 present	
 study	
 23	

Method	
 24	

Participants	
 24	

Design	
 26	

Materials.	
 26	

Procedure	
 30	

Results	
 31	

WASI	
 32	

Attentional	
 Networks	
 Test	
 33	

Stroop	
 Colour-­‐Word	
 Task	
 37	

Discussion	
 43	

References	
 48	

5 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Introduction

Overview

Plasticity – the ability to change as a result of experience – is a defining and

enduring feature of the brain across the lifespan (Huttenlocher, 2002). Like any other

intensively practiced skill – for example, music (Pascual-Leone, 2001), taxi-driving

(Woollett & Maguire, 2011), or meditation (Brefczynski-Lewis, Lutz, Schaefer,

Levinson, & Davidson, 2007) – the use of language affects the structure and function of

the brain. For example, babies are born with the ability to distinguish between the

sounds of all languages, but by the end of their first year of life, any redundant

connections between neurons (synapses) have been pruned, so that their phonetic

perception is strongly biased towards the sounds that make up the languages to which

they have been exposed (Kuhl, 2004). Some researchers have even suggested that the

use of language is “what makes us smart” (Spelke, 2003). It is certainly difficult to

imagine a skill that is practiced more frequently and acquired more universally.

Bilinguals are defined as people who require and use two (or more) languages in

their every day lives (Grosjean, 1992). The term applies to individuals exposed to two

languages from birth, who undergo what Meisel (1989) described a bilingual first

language acquisition, and also to those who are immersed in additional languages later

in life, who must overcome interference from their more entrenched first language

through some degree of neuronal reorganisation (Hernandez, Li, & MacWhinney,

2005). Globally, bilingualism is the norm, not the exception: Crystal (1997) estimates

that some two thirds of the world’s population growing up in bilingual or multilingual

environments.

In stark contrast to early suspicions that bilingual children were at risk of

retardation or at best, “mentally confused” (Bialystok, 2005), recent research links

6 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

bilingualism to cognitive reserve and suggests it may offer protection against dementia

in old age. Cognitive reserve describes a kind of resilience which appears to mediate

the relationship between brain pathology and the clinical expression of that pathology; it

is thought that this resilience derives from more efficient use of brain networks and/or

the ability to deploy differential brain networks to a given task (Stern, 2002). Using a

sample drawn from a memory clinic, Bialystok, Craik and Freedman (2007) found that

bilingual patients presented symptoms of dementia three to four years later than

monolingual patients. A second study, featuring a different sample, found that the first

clinical appointments of bilinguals occurred 4.3 years later and the estimated age of

onset (based on self or relative reports) was 5.1 years later than monolinguals.

Although these results should be viewed with some caution due to social and cultural

differences between participants, the difference is dramatic and has understandably

caused much excitement about the potential impact of bilingualism on the efficiency

and resilience of the brain.

The suggestion that bilingualism could enhance general cognitive performance

is not new. Following the first reports of positive cognitive effects in Peal and

Lambert’s (1962) landmark study, bilingualism has been linked to numerous cognitive

benefits including improved metalinguistic awareness (Ben-Zeev, 1977; Ianco-Worrall,

1972), creativity (Kessler & Quinn, 1987; Ricciardelli, 1992) and problem-solving

(Kessler & Quinn, 1980). In recent years, an influential area of research has explored

the relationship between bilingualism and executive control, that is, the ability to

selectively attend to stimuli and to inhibit inappropriate responses in order to achieve

desired goals. A large number of studies (reviewed below) have found that bilinguals

outperform their monolingual peers in tests involving cognitive conflict. Most of this

research has focused on individuals who were bilingual from birth or early childhood,

but a recent study found similar advantages in late-proficiency Chinese-English

7 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

bilinguals who acquired their second language between the ages of 12 and 19 years old

(Tao, Marzecova, Taft, Asanowicz, & Wodniecka, 2011). It is widely hypothesized that

the bilingual advantage in these tasks arises because the bilingual brain places

additional demands on a domain-general aspect of executive control in order to

selectively attend to two competing language systems (e.g. Bialystok, Craik, Green &

Gollan, 2009; Costa, Hernandez, Costa-Faidella, & Sebastian-Galles, 2009; Hinchley &

Klein, 2011).

Like bilingualism, computer programming has often been argued to convey

cognitive advantages; however, the results to date are equivocal (e.g. Pea & Kurland,

1984; Palumbo, 1990; Liao & Bright, 1991). Research into the cognitive consequences

of computer programming has largely focussed on the problem-solving domain

(Ormerod, 1990); in contrast, the present paper explores computer programmers’

cognition from the perspective of language acquisition, an approach recommended by

Murnane (1993; 2006). Like bilinguals, expert computer programmers successfully

manage two or more separate lexicons, grammars and divergent concepts, avoiding

inadvertent transfer between the two. Numerous studies of novice programmers

indicate that they struggle to do achieve this division; transfer from natural language

creates bugs (e.g. Soloway and Spohrer, 1989; Witschital, 1995). The present study

therefore considers whether the “bilingual advantage” in executive control is found in

computer programmers.

Section I explores the evidence linking bilingualism to enhanced executive

control. Empirical support for two reported advantages in conflict tasks is considered:

first, faster global reaction times; second, reduced interference in incongruent

conditions. Two theories relating these advantages are considered: the bilingual

inhibitory control hypothesis and conflict monitoring theory. Finally, a recent study

indicating that the bilingual advantage is also found in late proficiency bilinguals is

8 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

presented. Section II argues that the possibility that computer programming languages

could convey similar cognitive benefits to bilingualism merits empirical investigation.

It first considers the similarities and differences between natural languages and

computer programming languages. It then presents evidence from the study of novice

programmers, which indicates that successfully preventing transfer between natural

language and programming languages is crucial to the development of programming

expertise. Section III introduces the present study, which investigates the performance

of adolescent and young adult computer programmers in two executive control tasks

associated with the bilingual advantage.

Part I: Executive control and bilingualism

When communicating, bilinguals must successfully manage two conflicting

languages; one must be accessed whilst the other is suppressed, in order to avoid

involuntary language switching. The cognitive demands of this task are thought to be

the origin of the bilingual advantage in executive control.

A series of studies have demonstrated that bilinguals outperform their peers on

tests of non-linguistic interference. Bilingual children, middle aged adults and older

adults consistently record faster global reaction times in the Simon task (Bialystok,

Martin and Viswanathan, 2005; Martin-Rhee and Bialystok, 2008), the spatial

Stroop/Simon arrows task (Bialystok, 2006; 2008), and flanker arrows tasks such as the

Attention Networks Task (Costa, Hernandez and Sebastian-Galles, 2008; Carlson and

Meltzoff, 2008; Emmorey et al., 2009). These computer-based neuropsychological

tasks all require participants to respond to a series of stimuli as quickly and accurately

as possible; the interference comes from conditions where the stimuli and the response

required are incongruent, typically resulting in slower reaction times. (See Box 1.)

9 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Box 1. Non-linguistic interference tasks

Key features of three non-linguistic interference tasks commonly used in bilingual research – the Simon task,

the spatial Stroop task (sometimes referred to as a Simon arrows task) and the flanker task – are described

here. It should be noted however different studies interpret these tasks slightly differently; this causes

difficulties in directly comparing studies.

 Congruent trial: Incongruent trial:

Stimuli:

Response:

A. Simon Task. The participant’s task is to press one of two buttons depending on the colour of the square, as

quickly and accurately as possible. The relationship between the position of the arrow on the screen and the

location of the correct response determines congruency.

 Congruent trial: Incongruent trial:

Stimuli:

Response:

B. Spatial Stroop. The participant’s task is to press one of two buttons depending on the direction that the

arrow is pointing, as quickly and accurately as possible. The relationship between the direction of the arrow

and the location of the correct response determines congruency.

 Congruent trial: Incongruent trial:

Stimuli:

Response:

C. Flanker Task. In this task, the correct response is determined by the direction in which the central arrow is

pointing. Congruency is determined by the direction of the flanker arrows.

10 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

The bilingual advantage is less pronounced in young adults: studies have

reported that they recorded faster global RTs in spatial Stroop (Bialystok & DePape,

2009) and flanker tasks (Costa, Hernandez, & Sebastian–Galles, 2008; Tao, Marzecova,

Taft, Asanowicz, & Wodniecka, 2011); others have found that participants in this age

group only perform faster than their peers in tasks involving frequent switching between

congruent and incongruent trials, and not in low-switch versions of the same task (e.g.

Bialystok, 2006; Costa et al., 2009). A study using the Simon task with young adults

found no difference between the global RTs of bilingual and monolingual participants

(Bialystok, 2006). Overall, however, bilinguals tend to record faster global RTs in non-

linguistic interference tests; in a recent and impressively detailed empirical review,

Hilchey & Klein (2011) concluded that this finding was robust. The advantage,

however, does not appear to extend to bimodal bilinguals; Emmorey et al. (2008) found

no difference in the performance of speech-sign bilinguals and monolinguals on a

flanker task.

Some studies have also reported that the bilinguals were not only faster overall

but also less affected by the conflict conditions of these non-linguistic interference tests;

the difference in their reaction times in congruent versus incongruent conditions was

significantly smaller than for their monolingual peers. For example, Bialystok, Craik,

and Luk (2008) found that the Simon effect (the increase in reaction times in

incongruent conditions) was significantly smaller for older bilinguals than for age- and

IQ-matched controls. The authors observed similar differences in performance on the

Stroop colour-word naming task; bilinguals were less affected by the Stroop effect than

their monolingual peers (Bialystok, Craik and Luk, 2008). For many years, it was this

apparent advantage (rather than the global RT advantage) that attracted the greater

interest from theorists; this resulted in the bilingual inhibitory control advantage

(BICA) hypothesis. Based on Green’s (1998) inhibitory control theory, the BICA

11 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

hypothesis suggests that a general-purpose inhibitory control system holds additional

responsibilities in the bilingual mind, enabling the speaker to ignore distractions from

the irrelevant language in order to effectively communicate. It is proposed that in the

bilingual brain, both languages are simultaneously activated in response to stimuli,

regardless of the relative relevance of these respective languages to the speaker’s

context; the inhibitory control system must react to this conflict by suppressing the

irrelevant information. Support for the hypothesis comes from studies indicating that

parallel language activation is a feature of the bilingual brain. For example, Thierry and

Wu (2007) found measured event related potentials when Chinese-English bilinguals

were asked to judge the semantic relatedness of English word pairs (e.g. train-ham); the

results suggested that participants unconsciously translated the words into Chinese in

cases where the Chinese translations of the two words shared a character (e.g. the

Chinese words for train and ham are Huo Che and Huo Tui). This parallel activation

appears to affect on performance in comprehension and language production tasks (e.g.

Phillipp & Koch, 2009).

There are two key flaws with the BICA hypothesis. First, the evidence for

reduced interference effects in bilinguals is equivocal. Several researchers (e.g.

Bialystok, Martin & Viswanathan, 2005; Bialystok, 2006; Colzato et al., 2008) have

struggled to reliably reproduce this reduced interference effect. Meanwhile, one of the

most commonly cited examples of reduced Simon effect in bilinguals – a study by

Bialystok, Craik, Klein, and Viswanathan (2004) – suffers from methodological flaws;

the monolingual participants were all Canadian residents, whilst the bilingual

participants all lived in India or Hong Kong, raising the strong possibility that social

and cultural differences in the sample influenced results. Hilchey and Klein’s (2011)

review concludes that the bilingual advantage in conflict resolution tasks is “sporadic at

best, and in some cases conspicuously absent”. Further, the BICA hypothesis alone

12 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

cannot explain the more reliable finding that bilinguals outperform monolinguals by

similar magnitudes in both conflict and non-conflict conditions. Whilst some

supporters continue to endorse the hypothesis (Philipp & Koch, 2009), others (e.g.

Bialystok, 2006; Costa, 2009; Hilchey & Klein, 2011; Bialystok, Craik & Luk, in press)

are increasingly identifying a domain-general conflict monitoring network as a

promising alternative candidate for the source of the bilingual advantage.

Botvinick and colleagues’ conflict monitoring theory uses evidence from

cognitive neuroscience to argue that a network of specific brain regions, particularly the

dorsal anterior cingulate cortex (ACC), play a key role in detecting conflict in

information processing; upon the detection of such conflicts, the network allocates

additional cognitive control resources to the task in order to protect against subsequent

conflict (Botvinick, Cohen, & Carter, 2004). This network has been implicated in the

monitoring of conflict between two competing languages (e.g. Hernandez, Dapretto,

Mazziotta, & Bookheimer, 2001) as well as more general conflict monitoring tasks.

Hilchey & Klein (2011) explain the plausible theory that it is bilinguals’ frequent use of

this domain-general system to monitor two conflicting languages, rather than a specific

inhibitory control mechanism, that is the source of the bilingual advantage in non-

linguistic interference tests. Costa et al. (2009) provided evidence to support this theory

by manipulating conflict resolution tasks with the aim of placing differential demands

on the conflict monitoring network. In the high conflict-monitoring condition, the task

involved rapid switching between congruent and incongruent trials; conversely, in the

low conflict-monitoring condition, most of the trials were of the same type (congruent

or incongruent). Bilinguals tended to perform faster in the high-monitoring condition

but there was little difference between the groups in the low-monitoring condition. The

authors argued that this was due to impact of bilingualism on the conflict monitoring

system.

13 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

A recent neuroimaging study observed differences in the brain activity of

bilinguals and monolinguals during a flanker task (Luk, Anderson, Craik, Grady, &

Bialystok, 2010). The study demonstrated that both monolinguals and bilinguals

showed increased activation in similar brain regions (bilateral middle occipital gyrus,

left fusiform gyrus, left lingual gyrus, bilateral cerebellum, and right caudate and IFG)

during successful performance on congruent tasks; however, whilst monolinguals also

activated those regions during successful incongruent trial responses, bilinguals showed

increased activation in different brain regions (bilateral cerebellum, bilateral superior

temporal gyri, left supramarginal gyri, bilateral postcentral gyri, and bilateral

precuneus). The authors interpret the findings as support for the bilingual inhibitory

control hypothesis, an interpretation that appears to be logical. However, Hilchey and

Klein (2011) suggest that instead, bilinguals may possess a greater ability to detect and

allocate inputs to different brain regions, based on the presence or absence of conflict;

this frees up valuable processing resources, thus increasing processing speed and

reducing global RT. This account sits more comfortably with the evidence from

behavioural studies, since the inhibitory control explanation does not explain the global

RT advantage. Bialystok et al. (in press) suggest that the two theories need not be

mutually exclusive; in fact, they argue an inhibition account is still required in addition

to the conflict monitoring theory in order to explain why bilinguals sometimes show a

reduced interference effect in addition to faster global reaction times.

Whatever the source of the bilingual advantage, the finding that bilinguals

perform better on non-verbal conflict tasks has been widely replicated. However, the

studies described above are limited in two important ways: first, they have generally

focussed on early proficiency bilinguals – those who have been exposed to two

languages from birth or early childhood – and therefore cannot be generalised to those

who learn second languages later in life; second, they exclusively focus on balanced

14 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

bilinguals – that is, bilinguals who are equally proficient in both languages – so it is not

possible to discern whether or not this bilingual advantage would apply to those with

one more dominant language.

Fortunately, a study from Tao et al. (2011) makes good progress in addressing

these gaps in the literature. The authors compared the efficiency of the attention

networks of young Australian adults who were English monolinguals or Chinese–

English bilinguals. The bilingual group was further divided according to age of

acquisition: early bilinguals, who had arrived in Australia before the age of 6, and had

received their formal education in English; and late proficiency bilinguals, who had

arrived in Australia between the ages of 12 and 19 years old. The efficiency of three

attention networks – alerting (achieving and maintaining an alert state), orienting

(selecting information from sensory input), and executive control (monitoring and

resolving conflict) – as well as the hemispheric symmetry of these networks, was

measured using Lateralized Attention Network Test (LANT), designed by Green et al.

(2008). (This is an adaptation of the Attention Network Test described in detail in the

methods section and Box B below.)

Both bilingual groups significantly outperformed the monolingual group,

suggesting that the mastery of two very different grammars and lexicons produces the

bilingual advantage found in bilinguals speaking two similar languages. The early

proficiency group demonstrated significantly faster reaction times in all conditions; the

authors suggested was due to the enhancement of monitoring systems (Costa et al.

2009) resulting from early bilingualism, though they also acknowledged that this could

also be simply attributed to greater vigilance. Fascinatingly, however, the late

proficiency bilingual showed the greatest advantage in conflict resolution conditions;

the authors attributed this to greater reliance on the executive network in later second

language acquisition, both in order to stave off greater interference from their “more

15 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

solidified” first language and to support the processing of the weaker second language.

Participants in both groups of the study were not considered balanced bilinguals; the

early proficiency group were considered strongly dominant in L2, and the late

proficiency group were considered moderately dominant in L1. (It should be noted that

proficiency were self-rated using a 7-point Likert scale; no proficiency tests were

conducted.)

In summary, this section has described evidence for a bilingual advantage in

non-verbal conflict tasks. Bilingual children, middle aged and older adults perform

these tasks faster than their monolingual peers; bilingual young adults also perform

faster in the more cognitively demanding of these tasks. This advantage is thought to

derive from a conflict monitoring network, which is enhanced in bilinguals due to its

role in preventing transfer between their two languages. Most of the evidence for the

global RT advantage derives from studies of balanced, early-proficiency bilinguals;

however, it has also been found in late-proficiency bilinguals and those with

asymmetric linguistic abilities. Some studies have also found that bilinguals

demonstrate a reduced interference effect during incongruent trials; however these

results have proved difficult to replicate, particularly in children and young adults.

Importantly, it is generally agreed that the reason why bilinguals perform better in tests

of executive control is the additional cognitive demands of managing two separate

language systems.

Section II: Computer programming and cognition

Papert’s (1980) influential work raised hopes for that the Logo programming

language could be used as a tool to aid the development of children’s abstract thinking.

To date, empirical studies have focused primarily on seeking to identify gains in general

16 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

problem-solving ability as the result of programming instruction, and the evidence has

been less than conclusive (Palumbo, 1990). Pea & Kurland’s (1984) critical review

concluded that claims of cognitive transfer could not be substantiated. Pea (1983)

likened Papert’s enthusiasm for the potential of Logo in education to “the overzealous

prescriptions for studying Latin in Victorian times”; his implication was that Logo, like

Latin, had been over-hyped and had under delivered. However, several studies have

reported evidence of positive transfer. In a meta-analysis of 65 studies on the effects of

computer programming on cognitive outcomes, Liao and Bright (1991) found that 89

percent reported positive results, but the overall effect size was moderate (0.41); the

power of the effect could not match the power of Papert’s ideas.

Both Papert’s powerful ideas and Pea’s criticism equate programming languages

with natural languages, but to what extent is this comparison justified? In the 1970s,

some American universities accepted computer programming languages in fulfilment of

their foreign language requirement (Norman, 2008). Papert (1980) explicitly compares

the learning of computational languages with the learning of natural languages, “one of

the things children do best”. More recently, Cohen and Haberman (2007) called for

recognition of computer science as a high-level scientific language, “the language of

technology”. Weinberg (1971), however, was more cautious about the comparison:

“Just calling it a language doesn’t make it one.”

If empirical evidence suggested that the brain utilised the natural language

system to store and process computer programming languages, it would be reasonable

to hypothesise than expert programmers have bilingual brains. Unfortunately the

relationship between natural language processing and computer programming languages

has merited little empirical attention (Murnane, 1993; 2006). Studies of programming

tend to view it as a problem solving – rather than a linguistic – activity, so there has

been little exploration of the relationship between the vocabulary, grammar and syntax

17 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

of programming languages and programmers’ semantic and conceptual knowledge

(Ormerod, 1990).

A computer program is a text combining a data structure and a set of instructions

that enable the computer to calculate desired functions, written according to strict

grammatical rules that can be interpreted by the computer (Détienne, 2002). A

programming language is a semiotic code comprising vocabulary and grammar used to

convey instructions to the computer but also to other programmers, many of whom may

contribute to a single piece of software. There are, of course, many differences between

natural languages and programming languages. One difference that is often cited as the

most important (e.g. Detienne 2002) is that while in natural languages statements may

be open to interpretation, in programming languages they must be clear and

unambiguous; computer programmers are strongly constrained by the syntactic rules of

the programming languages.

Hockett (1960) isolated 13 features that characterize human language and which

distinguish it from other communication systems. Weinberg (1971) noted several

discrepancies between these and the characteristics of programming languages. Unlike

spoken languages, programming languages contain no vocal-auditory channel; and

because they are written rather than spoken, there is no rapid fading – instead, they must

be explicitly erased. Spoken languages are characterized by broadcast transmission and

directional reception – that is, the signal is sent out in all directions (to anyone within

earshot) and the listener can identify the direction the sound is coming from and thus

identify the sender; in contrast, programming languages feature directional transmission

in the form of computational input, but produce broadcast reception. The feature of

interchangeability exists in human languages – a typically developing person could

both receive and broadcast the same message, whereas computers and their

programmers cannot switch roles. However, as mentioned, programming languages

18 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

also convey information between human beings. Tremblay and Sorenson (1985, p.74)

consider this to be “the most important goal of a programming language”; a survey of

over 780 programmers found that 95% agreed that understanding existing code is a

significant part of their job (Cherubini, Venolia, DeLine, & Ko, 2007). Like natural

languages, computer programming languages allow people to collaborate and share

ideas.

Although there are differences between programming languages and natural

languages, there are also many similarities. Weinberg (1971) concedes that computer

programming languages appear to “live up to or exceed natural language[s]’ in the

remaining nine areas identified by Hockett (1960). For example, like natural languages,

programming languages are arbitrary – there is no direct connection between the word

and its meaning (an aspect that proves confusing for novices, as discussed below); both

programming and natural languages also have duality of patterning (they can be broken

down into small parts which can be recombined to form new meaning).

Norman (2008) argues that programming languages technically meet “the three

most important criteria” for languages. First, a language must be meaningful; whilst

natural languages use words and sentences to convey meaning, programming languages

achieve this via objects, functions and relations. Second, a language should allow

displacement, that is, communication about things that are not immediately present;

natural language achieves this with concepts such as yesterday or somewhere else, and

programming languages systematically convey instructions for the future and reference

data from the past. Third, a language must be productive, allowing the expression of

ideas that have never been expressed before; computer programming languages are

particularly strong in this respect.

Few studies have systematically compared natural and programming languages.

Kokol, Podgorelec, Zorman, Kokol, and Njivar (1999) provided a rare exception. The

19 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

authors compared the complexity of natural language texts to computer programs using

long-range power law correlations (LRCs). The authors found that the mean α values –

which are thought to measure the complexity or information content of the text – were

significantly higher for programming languages. This difference was attributed to three

key differences: first, the formality of programming languages, which forces order and

reduces randomness; second, the ambiguity of natural languages, which creates

randomness and disorder; third, the significantly larger vocabularies that feature in

natural language contribute more to randomness than complexity. In short, computer

programming languages were found to be more efficient in communicating complexity.

However, the presence of LRC in both natural and programming languages indicates

that they are derived from common (as yet unidentified) laws.

We have established that there are shared features between natural languages

and programming languages; however, it would be ridiculous to suggest that the

acquisition of programming languages is similar to an infant’s acquisition of language.

Instead, we will consider similarities between the later acquisition of second languages

and the difficult task of acquiring the fluent use of computer programming languages.

One striking similarity is the problem of language transfer. This term is traditionally

used to describe the influence of the native language (L1) on the acquisition of a

subsequent language (L2); Pavlenko and Jarvis (2002) have argued that this effect is in

fact bidirectional. Cross-linguistic interference is the negative side of language transfer,

and can occur at the lexical, semantic and also at conceptual level (Pavlenko, 2009). At

the lexical level, errors may occur when speakers erroneously assume that similar-

sounding words share meaning (false cognates), when words from the wrong language

are unconsciously inserted into sentences (unintentional language switches), or when

speakers inadvertently blend words from two languages to create new words – for

example, a Swedish-English bilingual may create the word clothers from the English

20 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

clothes and the Swedish klä der (Jarvis, 2009). At the conceptual level, Boroditsky

(2001) found that Mandarin-English bilinguals showed a bias towards thinking about

time in terms of vertical metaphors (which is how time is conceptualised in the Chinese

language) even when completing a task in English (which conceptualises time in terms

of horizontal metaphors); the strength of this bias was positively correlated with age of

English acquisition and the extent to which participants reported thinking in English.

Studies of the errors made by novice programmers indicate that knowledge of

natural language influences the way programming languages are understood by novice

and intermediate programmers (Witschital, 1995). Soloway and Spohrer (1989)

videotaped interviews with novice programmers solving problems and documented

examples of bugs caused by natural language transfer. For example, in the English

language lexicon, instructions such as while imply continuous checking of the condition

(“while x is happening, do y”); the novices therefore erroneously expected similar

results from the while loop in Pascal (in which the condition is only checked at discrete

points of time). This supports the findings of an earlier study (Soloway et al., 1981) in

which 34% of the students in an introductory programming courses reported this “while

demon” misconception. Another example from Soloway and Spohrer (1989) concerned

if-then-else commands. In natural language, this implies a looping construct – for

example, “If you find a door unlocked then lock it”; the novice therefore confuses

lexical similarity between the two languages with functional similarity. Negative

transfer has also been identified in the naming of variables; Sleeman, Putnam, Baxter,

and Kuspa (1986) found that students frequently erroneously believed that assigning

meaningful names (in natural language) to variables in computer programming would

have somehow aid the computer’s understanding of the program. These errors are very

similar to the false cognates errors experienced by bilinguals and second language

learners.

21 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Language transfer can have positive as well as negative effects, as knowledge

about the way language works can aid the acquisition of additional languages.

Metalinguistic awareness is knowledge of the structural components of language, for

example, understanding of the arbitrary connection between symbols and their referents

(Yelland, Pollard, & Mercuri, 1993). Childhood bilingualism has been linked to the

advanced development of metalinguistic awareness. For example, Ianco-Worrall (1972)

asked Afrikaans/English bilingual children whether it was possible to swap the names

for cow and dog; twice as many bilingual children understood that this was possible,

compared to their monolingual peers. Similarly, Ben-Zeev (1977) found that Hebrew-

English bilinguals performed better at symbol substitution tasks compared

monolinguals, suggesting that experience of more than one language system left

children “freer to abandon the rules of a particular language system for a different set of

rules where necessary”.

The relationship between computer programming and metalinguistic ability has

attracted less empirical attention. However, computer programming languages not only

provide a new lexicon, as natural language does, but also necessitate the programmer’s

active involvement in the construction of that lexicon via the naming of variables

(Détienne, 2002); therefore it is reasonable to predict that there is a relationship between

programming and metalinguistic ability. Some support for this assumption can be

found in studies of the effects of programming instruction on children with language or

literacy deficits. Lehrer and DeBernard (1987) found that language-impaired children

who received Logo programming instruction performed better in tests of perceptual-

language skills, compared to children who used commercially available learning

software or teacher-led instruction. Peppler and Warschauer (2011) observed how

“Brandy”, a nine-year-old girl with learning disabilities, learnt to program using Scratch

– an accessible programming language for children, in which programs are built from

22 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Lego-inspired graphical programming blocks (Resnick et al., 2009) – before she could

read or write. The authors, who followed Brandy over a two-and-a-half year period,

linked Brandy’s developing programming literacies to marked improvement in her

traditional print literacy: “Working with Scratch seemed to illuminate for Brandy the

mechanics of language and stimulate her metalinguistic awareness of how language

operates, as she made connections between the Scratch programming language and her

spoken (and increasingly written) English language” (p.32).

In summary, descriptions of the learning experiences of novice programmers

indicate that they experience language transfer effects. The errors they make suggest

that in order to successfully master computer programming languages, novices must

develop the ability to successfully inhibit transfer from their spoken languages. In the

bilingual literature, it is generally agreed that the mechanism responsible for the

successful management of two or more languages – and thus the avoidance of negative

transfer – is some domain-general aspect of executive control. It is therefore logical to

hypothesise that this same mechanism is employed by computer programmers to

facilitate the successful management of two very different language systems. The exact

specification of this mechanism is currently unclear – a promising theory suggests a

conflict monitoring system, in which the dorsal ACC plays a key role – but its existence

is indicated by the presence of a bilingual advantage in executive control tasks. The

present study therefore investigates the performance of computer programmers on these

tasks in order to ascertain whether computer programmers benefit from the “bilingual

advantage”.

23 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Section III: The present study

Literature searches indicate that to date, there has been little systematic

investigation of executive control abilities in computer programmers. Studies that have

considered the impact of computer programming on specific aspects of executive

function have focused on the role of working memory (e.g. Bergersen & Gustafsson,

2011). No studies comparing the cognitive effects of computer programming to the

cognitive effects of bilingualism have been found. The present study aimed to

contribute towards filling this gap in the literature.

The performance of computer programmers on two executive control tasks that

have been found to demonstrate the bilingual advantage was compared to that of

monolingual, age-matched controls. The aim was to demonstrate whether the computer

programmers showed a similar advantage. The Attention Networks Task (Fan,

McCandliss, Sommer, Raz, & Posner, 2002) is a computer-based task designed to

evaluate three attention networks: alerting (achieving and maintaining an alert state),

orienting (selecting information from sensory input), and executive attention

(monitoring and resolving conflict). Costa et al. (2008) compared the ANT

performance of Spanish-Catalan bilinguals (mean age 22 years) to monolingual

controls; the former recorded faster global reaction times (RTs) and exhibited less

interference in conflict conditions. Importantly, using a lateralised version of the ANT

(which was designed to provide additional information about the interhemispheric

organisation of the attention networks), Tao et al. (2011) found that early but less-

balanced bilinguals had significantly higher global RTs, but that late proficiency but

more balanced bilinguals showed an advantage in conflict resolution specifically. A

computer-based version of the Stroop colour-word test was also included to provide a

second measure of executive control; Bialystok et al. (2008) found that bilinguals

24 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

displayed smaller Stroop effects than monolinguals (though there was no difference in

reaction times).

The study involved two groups of programmers, all of whom (like Tao et al.’s

late proficiency bilinguals) acquired programming languages during adolescence. In

order to provide an indication of the length of programming experience required to

obtain any observed executive control advantages, two different age groups were used:

young adults, employed professionally as programmers, with at least five years’

experience of programming; and adolescents who programmed regularly but had less

programming experience. It was initially hoped to include a third group, children aged

8-11 who had 6 months’ programming experience, in order to provide further insight

into any cut-off point; however, last minute recruitment difficulties precluded this.

The hypotheses for the study were as follows: 1. Programmers would record

faster global RTs than controls on both executive control tasks. 2. Programmers would

be less affected by conflict conditions than controls in the executive control tasks. 3.

The difference between programmers and controls would be greater in the older age

group, due to greater experience of computer programming.

Method

Participants

A total of 40 monolingual, English-speaking adolescents and young adults

participated in the study. Participants were grouped by age (adolescent or young adult)

and programming experience (programmer or non-programmer). The mean age of the

young adults’ groups (programmers: N = 10, M = 24.13, SD = 0.82; non-programmers:

N = 10, M = 23.74, SD = .41) were not statistically different from each other; nor were

25 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

the adolescents’ groups (programmers: M = 16.05, SD = 1.17; non-programmers: M =

16.39, SD = 1.62).

The young adult programmers were recruited via contacts at digital agencies in

London. All were currently employed as professional computer programmers; they had

had an average of M = 7.8 years’ programming experience, SD = 2.23; 4 reported

coding “every day”, 6 coded “most days”. The group reported regularly using an

average of M = 3.34 programming languages; the most commonly used languages were

JavaScript (10), Ruby (8) and PHP (6). The group comprised 10 males and 1 female.

The young adult non-programmers were recruited via word of mouth. There were 10

males and one female; all were currently employed in office-based professions

involving daily computer use, but they had no experience of computer programming.

In the adolescent programmers’ group, 6 participants were recruited via an

advert in the newsletter of Young Rewired State, an organization that runs annual

events for young programmers. It had been hoped that all young programmers would

be recruited in this way; however the timing (summer term), the age group (GCSEs,

AS-levels) and the monolingual requirement (4 additional adolescents expressed interest

but were ineligible due to being bilingual) hindered recruitment. Therefore an

additional 4 adolescents were recruited via an IT teacher at a school in Kent, where

computing GCSE is taught. The group comprised 6 males and 4 females with an

average of M = 2.7 years’ programming experience, SD = 1.70; 4 reported coding “most

days”, 6 coded “weekly”. The group reported regularly using an average of M = 2.7

programming languages; the most commonly used languages were Javascript (6), Java

(4), C# (4) and Scratch (4). The control group comprised 10 adolescents, 6 males, 4

females, recruited via family and friends.

26 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Ethics. All participants received information sheets, tailored to their age and

programming group, containing details of the study. This explained that people who

speak two or more languages perform better at some tasks that involve quickly deciding

what to pay attention to and what to ignore; the aim of the study was to find out whether

people who regularly use computer programming languages are also better at these

tasks. All participants gave written consent to participation prior to taking part. In

addition, written parent or guardian consent was obtained for all under 18s. The

research received ethical approval under the Institute of Education ethics procedures.

Participants were not paid for taking part.

Design

The research employed a quasi-experimental factorial design, with between-

subject factors of programming experience and age. Participants were first asked to

complete the Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999; 2-subtest

version) in order to establish that the age-matched groups did not differ in IQ. In order

to test the experimental hypothesis, executive control was then tested by means of the

Attentional Networks Task (ANT, Fan et. al, 2002) and the Stroop colour-word task

(Stroop, 1935).

Materials.

Wechsler Abbreviated Scale of Intelligence (WASI). In order to compare IQ

across the groups, participants completed the 2-subtest version of the Wechsler

Abbreviated Scale of Intelligence (Wechsler, 1999). First, participants completed the

Vocabulary subtest, which assesses the vocabulary and lexical knowledge of the

participant. Second, participants completed the Matrix reasoning subtest, which

27 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

assesses the fluid intelligence of the participant. Raw scores were converted into t-

scores according to the participant’s age, and combined in order convert total t-scores

into FSIQ-2 score.

Attentional Networks Test (ANT). The first of two tasks selected to assess

executive control was the Attention Network Test, which was adapted from Fan et al.

(2002). As mentioned earlier, the ANT is a computer-based task designed to evaluate

three attention networks: alerting (achieving and maintaining an alert state), orienting

(selecting information from sensory input), and executive attention (monitoring and

resolving conflict).

After reading on-screen instructions, participants were presented with a series of

arrows on a screen, pointing either left or right. Their task was to identify the direction

in which the target arrow was pointing by pressing the corresponding arrow key on the

keyboard, as quickly and accurately as possible. In order to assess executive control,

target arrows were presented either alone (“neutral flanker type”) or flanked by arrows

pointing in the same direction (“congruent flanker type”) or in the opposite direction

(“incongruent flanker type”) (see Box 2, Step 3). Arrows were presented either above

or below a fixation point in the centre of the screen. Alerting and orientating networks

were assessed through the use of cues prior to the presentation of the stimulus: in order

to manipulate alertness, participants received either a cue comprising two stars (“double

cue”) or no cue; in order to assess orienting effects, participants received either a cue

indicating where on the screen the arrows would appear (“spatial cue”) or a cue in the

centre of the screen which gave no clues about where the arrows would appear (“central

cue”) (see Box 2, Step 2).

28 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

In total, there were 12 different types of trial: flanker type (congruent,

incongruent or neutral) x cue type (no cue, centre cue, double cue, spatial cue). Each

type of trial was repeated 4 times, creating a total of 48 trials. Trials were presented in a

random order. Each trial ran as follows: 1. A fixation point (+) appeared in the centre

Box 2: The adaption of the Attention Networks Task used in the present study

Step 1: fixation point. At the beginning of each trial, participants viewed a fixation point for 400 ms.

Step 2: cue. In no cue trials, no cue was presented. In centre cue and double cue trials, either one

or two cues (*) were presented; these did not indicate the location in which the arrows would appear.

In spatial cue trials, the location in which the cue appeared indicated where the target arrow would

appear.

Step 3: arrows. Target stimulus was then presented either above or below the fixation point for

1700ms or until a response was given. In neutral trials, the target arrow appeared alone. In

congruent trials, the target arrow was flanked by arrows facing in the same direction; in incongruent

trials, flanker arrows faced in the opposite direction.

29 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

of the screen for 400ms; 2. A cue (or no cue) was presented for 150ms; 3. The target

stimuli was presented (with or without flankers), disappearing either when the

participant responded or after 1700ms. (See Box 2, Step 3).

The ANT was programmed using Paradigm experimental software; the software

recorded response time and accuracy for each trial. All stimuli were presented in black

font, on a light blue background. The fixation point and cues were presented in

Microsoft Sans Serif font at 27.75pt. Target and flanker arrows were created using the

font Wingdings 3 at 36pt; these were presented either above, or below the fixation

point. Prior to the actual task, a practice run of 12 trials was conducted in order to

ensure that participants understood the task. There were no difficulties in task

comprehension

Stroop Colour-Word Task. The second task employed to assess executive

control was a computer-based version of the Stroop colour-word task (Stroop, 1935).

The task assesses participants’ ability to selectively attend to stimuli, filtering out

misleading information. On-screen instructions explained to participants that they

would see a series of words written in different colours. Their task was to identify the

colour in which the word was written by pressing one of two keys on the keyboard:

RED and BLUE mapped onto the left arrow key; GREEN and YELLOW mapped on

the right arrow key.

Each word belonged to one of three trial types: congruent, incongruent or

neutral. In congruent and incongruent trials, the words were RED, YELLOW, GREEN,

BLUE. In congruent trials, the colour of the words matched their semantic meaning:

RED, YELLOW, GREEN, BLUE. In incongruent trials, the meaning of the colour

word conflicted with the target colour, resulting in semantic conflict e.g. RED,

YELLOW, GREEN, BLUE. All semantically incongruent condition also required an

incongruent response; no incongruent colour-words were presented that mapped onto

30 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

the same response key as the target colour. The neutral condition comprised four non-

colour words: DOG, JUMP, KNIFE and FLOWER. These words are not semantically

associated with any of the target colours, but their character lengths correspond to the

character lengths of the four colour words. Each neutral word was presented three times,

in a different colour each time (red, blue, yellow or green, selected at random).

The Stroop colour-word task was programmed using Paradigm experimental

software; the software recorded response time and accuracy for each trial. Stimuli

comprised a series of words presented in one of four target colours – red, blue, green

and yellow – using Courier New font in bold at 36 point. These words were presented

in the centre of the screen, on a Gainsboro (light grey) background.

A total of 12 trials were conducted in each condition, making a total of 36 trials.

Trials were presented in a random order. Each word disappeared after 2000ms or as

soon as a response was given. Prior to the actual task, a practice run of 8 trials was

conducted in order to ensure that participants understood the task. There were no

difficulties in task comprehension.

Procedure

Due to the disparate geographic location of participants in the experimental

groups (Greater London, Birmingham, St Albans, Milton Keynes, Manchester,

Cheltenham, Kent, West Sussex), the researcher visited participants at their homes

(adolescents), work places (young adults) or alternative suitable locations as required,

and the testing took place in a quiet, well-lit room. For practical reasons, there were

differences in the times and days that the different age groups were seen: adolescents

were seen at weekends or holidays, whereas young adults were seen towards the end of

a working day. The order of testing was: WASI Vocabulary, WASI Matrix Reasoning,

ANT, Stroop colour-word task. The executive function trials were all presented on a

31 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Toshiba Equium L40 156 laptop computer with a 15 inch screen, with a resolution of

1280 x 800 pixels. At the end of the experiment, participants were debriefed and

offered the opportunity to ask questions.

Results

Results from the experiment were analysed as follows. WASI: In order to

identify any significant IQ differences that might influence results, a two-way ANOVA

was first conducted on FSIQ-scores, with age and programming experience as the

independent variables. ANT: Group performances on the ANT were then compared.

Response times analysed via a three-way mixed ANOVA with a within-participant

factor of congruency (3 levels: congruent, incongruent, neutral) and two between-

participant factors: age group (2 levels: adolescent or young adult) and programming

experience (programmer or non-programmer). Conflict effect was calculated

(incongruent trials RT – congruent trials RT) and a two-way ANOVA performed with

age and programming experience as the independent variables. Kruskal-Wallace tests

were used to compare overall % errors and conflict effect ERR (errors on incongruent

trials – errors on congruent trials). Stroop colour-word task: Group differenced in

performance on the Stroop colour-word task were then analysed. A Kruskal-Wallis test

was used to compare response times of the four groups in each of the three trial types

(congruent, incongruent and neutral). The Stroop effect was calculated (incongruent RT

– congruent RT); a Kruskal-Wallis test was used to compare group differences in the

size of the Stroop effect. A MANOVA was used to compare differences in facilitation

effect (congruent RT – neutral RT) and cost (incongruent RT – neutral RT). Finally,

Kruskal-Wallis tests were used to compare group differences in global errors and in

Stroop error effects (incongruent ERR% - congruent ERR%).

32 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

WASI

Mean FSIQ-2 scores for each of the four groups are presented in Table 1.

Exploratory data analysis indicated that the data met the assumptions required for

parametric testing; there was one extreme (low) outlier in the adolescent programmers

group but this had a minimal effect on the mean for the group so it was not removed

from the sample.

Table 1.

Mean FSIQ-2 Scores And Standard Deviations For Adolescent and Young Adult

Programmers And Non-Programmers.

Age group Programming experience Mean FSIQ-2 SD

Adolescents Programmer 112.30 9.44

Control 113.40 6.93

Young adults Programmer 119.50 7.68

Control 118.30 5.23

A two-way ANOVA was conducted with FSIQ-2 score as the dependent

variable; the factors were age and programming experience. This revealed a significant

difference in age, F(1, 36) = 6.28, p < .05, partial η2 = .15; the young adults had higher

FSIQ-2s scores than the adolescents. There was no significant difference in

33 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

programming experience, F < 1, and no significant interaction between age and

programming experience, F(1, 36) = .23, p > .05.

Attentional Networks Test

Executive control network.

RT analysis. Response time (RT) analysis focused primarily on participants’

overall scores in each flanker condition – congruent, incongruent and neutral – as this

monitors the executive control network, in which bilingual advantage has been found.

Response times (RTs) were analysed for each participant’s responses to each of

the 48 trials. RTs for error trials and no response trials were excluded (3.70% of all

responses). Median RTs were then calculated across each flanker condition (congruent,

incongruent, neutral).

First, exploratory data analysis was performed. The Kolmogorov-Smirnov test

indicated that the data for the adolescent non-programmers group in the congruent

condition, D(10) = .276, p <. 05, were not normally distributed; however, the more

sensitive Shapiro-Wilk test was not significant: D(10) = .883, p > .05. Levene’s Test of

Homogeneity of Variance was significant in the incongruent condition, F(3, 36) = 3.39,

p < .05. Examination of the boxplots revealed extreme scores for case 25 in both

congruent and incongruent conditions; these scores had a substantial effect on the mean

RT of the adolescent non-programmers’ group and were therefore removed from the

analysis. Other outliers (cases 14, 19 and 29 in the congruent condition; 14, 19 in the

incongruent condition; 3, 5 in the neutral condition) did not substantially affect the

mean and were therefore retained. Table 2 presents median RTs and SDs by group and

flanker condition (congruent, incongruent, neutral) following the removal of case 25.

34 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

A three-way mixed ANOVA was conducted with a within-participant factor of

congruency (3 levels: congruent, incongruent, neutral) and two between-participant

factors: age group (2 levels: adolescent or young adult) and programming experience

(programmer or non-programmer). This showed a main effect of congruency, F (2, 70)

= 93.56, p < .001, partial η2 = .73. This was due to all groups responding more slowly

in the incongruent condition than in the neutral and congruent conditions, as illustrated

in Fig. 1. The main effect of programming experience was also significant, F (1, 35) =

8.01, p < .01, partial η2 = .19. This was as a result of programmers responding more

quickly than non-programmers in all conditions. The effect of age was not significant,

F < 1; as Fig. 1 illustrates, young adult programmers had the global RTs, and young

adult non-programmers had the slowest global RTs. None of the interactions were

significant (congruency and age; congruency and programming; and congruency, age

and programming), F < 1.

Table 2.

Mean Response Times and Standard Deviations for Adolescent and Young Adult

Programmers and Controls in the Attention Networks Task

 Adolescents Young Adults

Trial type

Programmers Controls Programmers Controls

RT (ms) SD RT (ms) SD RT (ms) SD RT (ms) SD

Congruent 483.9 65.0 520.1 50.8 474.1 43.6 551.4 87.1

Incongruent 563.5 49.5 611.4 109.8 524.4 33.7 613.1 51.4

Neutral 456.0 466.5 503.2 62.7 454.3 32.1 528.8 57.1

35 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Figure 1. Line graph showing how age and programming experience affected response

times in congruent, incongruent and neutral trials in the Attention Networks Task. Both

groups of programmers were faster than non-programmers.

Conflict effect RT was calculated by subtracting RT in the congruent condition

from RT in the incongruent condition. A two-way ANOVA was performed with

conflict effect RT as the dependent variable; age and programming experience were the

independent variables. The results were not significant, F < 1; there was no significant

difference in the degree to which the groups were disadvantaged in the incongruent

conditions.

Error analysis. Table 3 shows the mean % error rates for all four groups in

congruent, incongruent and neutral conditions, as well as the total error rates. Three

Adolescent Programmers Adolescent Controls
Young Adult Programmers Young Adult Controls

Congruent

Incongruent

Neutral

0 100 200 300 400 500 600 700

Tr
ia

l T
yp

e

Mean RT (ms)

36 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

participants were excluded from the analysis due to extreme high scores (cases 7, 19,

and 25) that had a substantial effect on group means.

Table 3.

Exploratory data analysis indicated that the distribution of the total error rates

deviated significantly from normality in the programming, F(18) = .28, p < .01, and

non-programming, F(19) = .25, p < .05, groups. Therefore, a Kruskal-Wallace test was

used to compare all four groups: adolescent programmers, adolescent non-programmers,

young adult programmers and young adult non-programmers; the difference between

the groups was not significant, H(3) = 1.06, p > .05.

Conflict effect ERR was calculated by subtracting ERR% in the congruent

condition from ERR% in the incongruent condition. The Kolmogorov-Smirnov test

indicated that although the data were normally distributed in the professional

programmers’ group, D(10) = .18, p > .05, they were not normally distributed in the

ANT Task: Mean Percentage Error Rates By Group and Flanker Type.

 Adolescents Young Adults

Trial type

Programmers Controls Programmers Controls

ERR% SD ERR% SD ERR% SD ERR% SD

Congruent 0 0 0 0 0.7 2.1 0 0

Incongruent 8.3 8.3 7.6 7.1 9.7 9.2 5.0 4.9

Neutral 0 0 0.6 2.0 1.3 4.0 3.1 1.4

Overall 2.8 2.8 2.8 2.6 3.9 3.2 2.7 2.0

37 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

remaining three groups: adolescent programmers, D(10) = .36, p < . 05, adolescent non-

programmers D(10) = .35, p < . 05 and professional non-programmers, D(10) = .25, p <

. 05. A non-parametric Kruskal-Wallis test was used to compare the means; the results

were not significant, H (3) = 2.01, p = .56.

Stroop Colour-Word Task

Response times (RTs) were analysed for 12 trials of each condition (congruent,

incongruent and neutral). RTs for error trials and no response trials were excluded

(3.06% of all responses). Median RTs were then calculated for each participant in each

condition. Initial examination of the revealed the presence of a small Stroop effect for

the adolescent controls and young adult programmers, and a small negative Stroop

effect for adolescent programmers and young adult controls; a surprising result. It was

hypothesized that, due to the random presentation of the stimulus, there was an uneven

distribution of trials in which the target colour was the same as the proceeding trial.

Further examination of the data revealed that this was indeed the case. Participants

varied in the number of these types of trial they experienced, and in whether these trials

occurred on congruent, incongruent or neutral trials; this negated the Stroop effect.

Therefore, RTs for these trials were excluded (23.06% of all responses) and median RTs

recalculated for each participant. Mean RTs and SDs are presented in Table 4.

RT analysis. As Table 4 illustrates, young adult programmers displayed the

slowest RTs across all three conditions. Exploratory data analysis indicated that the data

violated the assumption of homogeneity in congruent, F(3, 35) = 10.09, p < .001,

incongruent, F(3, 35) = 3.52, p < .05, and neutral trials, F(3, 35) = 5.55, p < .05. A

Kruskal-Wallis test was used to compare the four groups’ RTs in each of the three

conditions. This revealed a significant difference in reaction times between groups in

38 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

the congruent condition, H(39) = 12.45, p < .05; the young adult programmers (M =

781.3, SD = 344.7) were much slower than the young adult controls (M = 591.1, SD =

114.3), while the adolescent programmers (M = 546.4, SD = 64.2) were slower than the

adolescent controls (M = 471.7, SD = 55.5), who were the fastest group overall. The

professional programmers were also the slowest group in the incongruent and neutral

conditions, but this difference was not significant, p > .05.

The Stroop effect is calculated by subtracting the participant’s median score in

the congruent trials from their median score in the incongruent trials. Due to the

presence of interference in the incongruent trials, we would expect participants to record

slower response times, thus we would predict a positive Stroop effect score for all

groups. As Fig X shows, adolescent programmers (M = 23.42, SD = 82.14), adolescent

non-programmers (M = 73.45, SD = 51.48) and professional non-programmers (M =

Table 4.

Response Times For Adolescent and Young Adult Programmers and Non-Programmers in the

Stroop Colour-Word Task.

 Adolescents Young Adults

Trial type

Programmers Controls Programmers Controls

RT (ms) SD RT (ms) SD RT (ms) SD RT (ms) SD

Congruent 546.4 64.2 471.7 55.5 781.3 344.7 591.1 114.3

Incongruent 569.9 108.9 545.1 80.7 739.0 265.0 642.9 179.2

Neutral 577.9 108.9 529.5 58.5 715.2 243.8 656.6 177.9

39 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

51.82, SD = 89.51) all demonstrated a positive Stroop effect; this reflects higher RTs in

incongruent trials than in congruent trials. However, professional programmers

demonstrated a negative Stroop effect (M = -11.57, SD = 76.27); contrary to

predictions, they responded more quickly in incongruent than congruent trials.

Figure 2. Bar chart showing the Stroop effect by group. Stroop effect was calculated by

subtracting mean RT in congruent trials from mean RT in incongruent trials.

Exploratory data analysis on Stroop effect RT by group indicated that data in the

adolescent programmers’ group, D(10) = .266, p <. 05, and the professional

programmers’ group, D(10) = .317, p < .05, were not normally distributed. Therefore,

the groups were compared using a Kruskal-Wallis test; the difference between the

groups was not significant, H(39) = 7.244, p > .05.

-60

-40

-20

0

20

40

60

80

Adolescent programmer Adolescent control
Young adult programmer Young adult control

St
ro

op
 E

ffe
ct

 R
T

(m
s)

Group

40 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Another way of analysing the data is in terms of facilitation (the use of the

additional helpful information in the congruent trials) and cost (the extra effort required

to suppress the misleading information in the incongruent trials) relative to scores in the

neutral trials. Mean RTs for Stroop facilitation were calculated by subtracting scores in

the congruent trials from scores in the neutral trials. Since we would expect the

congruent RTs to be faster than neutral RTs, due to the presence of helpful information,

we would expect Stroop facilitation scores to be positive. Mean RTs for Stroop cost

were calculated by subtracting incongruent trial RTs from neutral trial RTs. Since we

would expect the incongruent RTs to be slower than neutral RTs, we would expect this

score to be negative. 1 extreme outlier in the non-programmers’ group (case 38), which

was significantly affecting the mean and standard deviation in that group (with case 38,

M = 13.70, SD = 161.20, without case 38, M = -29.16, SD = 86.58), was removed from

the analysis. The resulting RTs and standard errors for facilitation and cost by group

are presented in Fig 3. As we can see, there were two surprising trends in the data.

First, the adolescent programmers group recorded a positive Stroop cost score (M = 8.0,

SD = 80.03), which means that they responded more quickly in incongruent trials than

in neutral trials; the adolescent controls (M -15.65, SD = 69.65), young adult

programmers (M = -23.87, SD = 85.81) and young adult controls (M = -29.20, SD =

84.57) all recorded negative scores, as would be expected. Second, and even more

surprisingly, the young adult programmers recorded a negative Stroop facilitation score

(M = -66.10, SD = 131.57), which means that they were negatively affected by

congruent trials in comparison to neutral trials. The young adult controls (M = 35.08,

SD = 83.33), adolescent programmers (M = 31.48, SD = 110.60), and adolescent

controls (M = 57.80, SD = 70.74) all recorded positive facilitation scores, as expected.

41 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Fig 3. Bar chart showing Stroop facilitation effect (Congruent RT – Neutral RT) and

Stroop cost (Neutral RT – Incongruent RT) by group.

Kolmogorov-Smirnov and Shapiro-Wilk tests confirmed that data was normally

distributed across all groups, Levene’s Test of Homogeneity of Variance was not

significant, and there were no outliers; the data met the criteria for parametric testing. A

MANOVA was conducted with Stroop facilitation effect RT and cost effect RT as the

dependent variables and group as the independent variable (4 levels: adolescent

programmer, adolescent control, young adult programmer, young adult control). Using

the Roy’s largest root statistic, this effect was significant, F(3, 34) = 3.71, p < .05, Θ =

.33; however Pillai’s trace, Wilks’ Lambda and Hotelling’s trace returned non-

significant results, p > .05. Univariate analyses indicated that the effect of group on

Stroop facilitation effect was approaching significance, F (3, 34) = 2.84, p = .053,

Adolescent programmer Adolescent control
Young adult programmer Young adult control

-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40
50
60

Stroop facilitation effect Stroop cost

M
ea

n
R

T
(m

s)

42 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

partial η2 = .200, reflecting atypical direction of the effect in young adult programmers;

the effect of group on Stroop cost was not significant, F < 1.

Error analysis Percentage error rates in congruent, incongruent and neutral

trials, overall percentage errors, and Stroop error effect (ERR% congruent trials –

ERR% incongruent trials) were calculated and are presented in Table 5. Participants 8

and 12 were excluded from the analysis due to extremely high error rates. As Table 5

shows, young adult controls (M = 2.0, SD = 2.0) followed by adolescent programmers

(M = 2.5, SD = 1.7) made the fewest errors; adolescent controls (M = 5.8, SD = 4.0)

made the most errors, followed by young adult programmers (M = 5.2, SD = 4.0).

Table 5.

Error Rates and Stroop Error Effect for Adolescent and Young Adult Programmers and Non-

Programmers in the Stroop Colour-Word Task

 Adolescents Young Adults

Trial type ERR% SD ERR% SD ERR% SD ERR% SD

Congruent 1.8 3.6 5.8 6.9 7.4 8.8 1.9 3.7

Incongruent 2.8 4.2 6.7 5.3 4.6 8.4 3.7 6.1

Neutral 2.8 4.2 5.8 6.9 3.7 6.1 0 0

All 2.5 1.7 5.8 4.0 5.2 4.0 2.0 2.0

Stroop effect 4.6 8.5 0.8 8.3 -2. 8 12.5 1.9 8.1

43 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Global errors. Exploratory data analysis of total error rates indicated that the

data were not normally distributed in three of the four groups: adolescent programmers,

D(8) = .327, p <. 05, adolescent controls, D(10) = ..276, p <. 05, and young adult

controls, D(9) = .272, p <. 05. A Kruskal-Wallis test indicated that there was a

significant difference between the groups, H(36) = 8.51, p < .05; however post-hoc

Mann Whitney tests with Bonferroni corrections were not significant, p >.008.

Stroop effect errors. Exploratory data analysis of the Stroop error effect

indicated that the data were not normally distributed in the adolescent programmers’

group, D(9) = .375, p = .001. A Kruskal-Wallis test indicated that there was a

significant difference between the groups, H(36) = 8.51, p < .05. This reflected the

unusual negative Stroop error effect recorded by the young adult programmers (M = -

2.78, SD = 12.5), indicating that they made more errors in congruent trials than

incongruent trials; in contrast, the adolescent programmers (M = 4.63 SD = 8.45),

adolescent controls (M = 0.84, SD = 8.29) and young adult controls (M = 1.85, SD =

8.10) made more errors in incongruent trials.

Discussion

The goal of the present study was to investigate whether the “bilingual

advantage” was also found in computer programmers. The study was motivated by a

hypothesis that the that same mechanism used by bilinguals to manage two separate

languages may also be utilised by computer programmers, in order to prevent negative

transfer between computer programming languages and natural languages. The study

used two tests of executive control in which bilinguals have been found to outperform

their monolingual peers: the Attention Networks Task (ANT) and the Stroop colour-

44 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

word task. It was predicted that computer programmers would respond to these tasks

more quickly than their monolingual peers. More tentatively, it was predicted that a

reduced conflict effect might also be found in the computer programming groups.

All of the computer programmers who participated in the study acquired their

computer programming languages during adolescence; importantly, bilinguals who

acquired their second language during adolescence have been found to exhibit the

bilingual advantage. Two groups of programmers, with differing levels of experience,

were studied in order to provide an indication of the extent of programming language

experience required to produce an advantage. In order to provide a baseline comparison,

two groups of age-matched and IQ-matched controls also took part.

The results of the ANT supported the first hypothesis: programmers recorded

faster global RTs than monolingual controls, and this difference was significant. Both

adolescent and young adult programmers’ groups recorded faster global RTs than both

of the control groups. The young adult professionals recorded the fastest RTs, while the

young adult controls recorded the slowest RTs; higher levels of experience and

expertise were associated with greater executive control advantages over age-matched

controls. Contrary to the second hypothesis, there was no significant difference in

conflict effect. The results suggest that computer programmers may benefit from

greater efficiencies in conflict monitoring network, the same mechanism thought to be

responsible for the bilingual advantage.

The results of the Stroop test are more difficult to interpret. Contrary to

predictions and to the ANT results, young adult programmers recorded the slowest

response times; the difference was significant in the congruent condition. Largely as a

result of this slow response in congruent conditions, the young adult programmers’

group recorded a positive Stroop effect; they responded more quickly in incongruent

than congruent conditions. A significantly slower global RT for programmers does not

45 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

fit with the predictions of the study. One study from the bilingual literature is relevant:

using the (admittedly quite different) spatial Stroop test, Bialystok, Craik and Luk

(2008) found that bilinguals outperformed monolinguals on interference effect but not

on global RT. This was the result of bilinguals responding 50ms more slowly than

monolinguals on congruent trials (they were just 10ms faster than monolinguals on

incongruent trials). So, whilst the slow reaction times by programmers in the

congruent condition were not predicted, they are not entirely at odds with findings

relating to the bilingual advantage. It should also be noted that in a neuroimaging

study, Waldie, Badzakova-Trajkov, Milivojevic, and Kirk (2009) failed to find a

significant difference in the performance of young adult monolinguals and bilinguals in

a very similar Stroop colour-word task; however, they did find evidence that different

areas of the brain were active during this task.

Somewhat surprisingly, three of the groups – both adolescent and young adult

controls as well as the young adult programmers – were negatively affected by the

presence of helpful cues (the word spelling out the correct answer) compared to neutral

conditions; only the adolescent programmers made efficient use of these cues – they

also showed less conflict cost than both control groups. It could be argued there are

differences in the way computer programmers process text-based versus symbolic

information – perhaps the Stroop activity is more like bug-fixing, and therefore experts

access some automatic process to spot mistakes, but have no such practiced skill in

utilizing useful cues – and that this difference only emerges following extensive

practice, hence the contrast with the less experienced group. However, the unexpected

pattern of these results, coupled with observed weaknesses in the experiment as the

result of random presentation of the stimulus, raise the strong possibility that something

other than the Stroop effect may have influenced the results. The results should

therefore be interpreted with caution.

46 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Overall, the present study has put forward a strong argument for the possibility

that the “bilingual advantage” in executive control may also be found in computer

programmers. The results of the study provide some evidence in support of that

argument – there was a statistically significant advantage for the programming group in

the ANT. However, the results of this small study are far from conclusive, and further

research is needed before clear evidence of an association between computer

programming and executive control can be claimed. The annual Young Rewired State

event, which occurs in August, offers the opportunity to access large numbers of young

coders; over 500 under 19s participated this year. There are also ample opportunities

for prospective studies, for example, a new computer science GCSE will be available in

schools from September and, in the younger age group, the organization Code Club

aims to run computer programming courses in half of the UK’s primary schools.

It should be noted that the due to the quasi-experimental design, we cannot be

certain that programming experience caused the differences in performance on the

tasks; it may be that people with better executive control are more likely to persist with

the development of programming language expertise because this advantage eases the

learning process. A prospective study could help to clarify the direction of causation.

However, if programming language acquisition is a benefit, rather than a cause, of

enhanced executive control, this would not make the association any less interesting; in

fact, it may make it more so. Learning to program is notoriously difficult – it is

estimated that between 30% and 60% of university students fail the first programming

course (Dehnadi & Bornat, 2006) and predicting which students are likely to make the

grade has proved equally difficult (Bornat, Dehnadi, & Simon, 2008). If other studies

replicate an association between executive control and computer programming, it would

be interesting to compare the performance of bilinguals and monolinguals on

introductory programming courses. It has been argued that since most bilinguals

47 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

acquire two languages as a result of circumstance, rather than as a result of social

advantages or cognitive abilities, the bilingual advantage is likely to be causal (though

this argument is not yet been supported by prospective studies). If second language

acquisition could help to develop the cognitive prerequisites of learning to program, this

could have important implications for computer science education.

[Words: 11,341, excluding references and diagrams]

48 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

References

Ben-Zeev, S. (1977). The Influence of Bilingualism on Cognitive Strategy and

Cognitive Development. Child Development, 48(3), 1009–1018.

Bergersen, G. R., & Gustafsson, J. E. (2011). Programming skill, knowledge and

working memory among professional software developers from an investment

theory perspective. Journal of Individual Differences, 32(4), 201–209.

Bialystok, E. (2005). Consequences of bilingualism for cognitive development. In J. F.

Kroll & A. M. B. De Groot (Eds.), Handbook of bilingualism: psycholinguistic

approaches (pp. 417–453). New York, NY: Oxford University Press.

Bialystok, E. (2006). Effect of Bilingualism and Computer Video Game Experience on

the Simon Task. Canadian Journal of Experimental Psychology/Revue

canadienne de psychologie expérimentale, 60(1), 68-79.

Bialystok, E. (2008). Bilingualism: The good, the bad, and the indifferent. Bilingualism:

Language and Cognition, 12(01), 3.

Bialystok, E., Craik, F., & Luk, G. (2008). Cognitive control and lexical access in

younger and older bilinguals. J Exp Psychol Learn Mem Cogn, 34(4), 859-873.

Bialystok, E., Craik, F. I., & Freedman, M. (2007). Bilingualism as a protection against

the onset of symptoms of dementia. Neuropsychologia, 45(2), 459-464.

Bialystok, E., Craik, F. I., Klein, R., & Viswanathan, M. (2004). Bilingualism, aging,

and cognitive control: evidence from the Simon task. Psychol Aging, 19(2), 290-

303.

Bialystok, E., Craik, F. I. M., Green, D. W., & Gollan, T. H. (2009). Bilingual Minds.

Psychological Science in the Public Interest, 10(3), 89-129.

Bialystok, E., Craik, F. I. M., & Luk, G. (in press). Bilingualism: consequences for

mind and brain. Trends in Cognitive Sciences.

49 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Bialystok, E., & DePape, A. M. (2009). Musical expertise, bilingualism, and executive

functioning. J Exp Psychol Hum Percept Perform, 35(2), 565-574.

Bialystok, E., Martin, M. M., & Viswanathan, M. (2005). Bilingualism across the

lifespan: The rise and fall of inhibitory control. International Journal of

Bilingualism, 9(1), 103-119.

Bornat, R., Dehnadi, S., & Simon. (2008). Mental models, Consistency and

Programming Aptitude. Paper presented at the Proceedings of the tenth

conference on Australasian computing education, Wollongong, NSW, Australia.

Boroditsky, L. (2001). Does language shape thought? Mandarin and English speakers'

conceptions of time. [Research Support, U.S. Gov't, Non-P.H.S.]. Cogn Psychol,

43(1), 1-22. doi: 10.1006/cogp.2001.0748

Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior

cingulate cortex: an update. Trends Cogn Sci, 8(12), 539-546.

Brefczynski-Lewis, J. A., Lutz, A., Schaefer, H. S., Levinson, D. B., & Davidson, R. J.

(2007). Neural correlates of attentional expertise in long-term meditation

practitioners. Proc. Nat. Acad. Sci., 104(27), 11483–11488.

Carlson, S. M., & Meltzoff, A. N. (2008). Bilingual experience and executive

functioning in young children. Dev Sci, 11(2), 282-298.

Cherubini, M., Venolia, G., DeLine, R., & Ko, A. J. (2007). Let's go to the whiteboard:

how and why software developers use drawings. Paper presented at the

Proceedings of the SIGCHI conference on Human factors in computing systems,

San Jose, California, USA.

Cohen, A., & Haberman, B. (2007). Computer Science: A Language of Technology.

Inroads — SIGCSE Bulletin, 39(4).

Colzato, L. S., Bajo, M. T., van den Wildenberg, W., Paolieri, D., Nieuwenhuis, S., La

Heij, W., & Hommel, B. (2008). How does bilingualism improve executive

50 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

control? A comparison of active and reactive inhibition mechanisms. J Exp

Psychol Learn Mem Cogn, 34(2), 302-312.

Costa, A., Hernandez, M., Costa-Faidella, J., & Sebastian-Galles, N. (2009). On the

bilingual advantage in conflict processing: now you see it, now you don't.

Cognition, 113(2), 135-149.

Costa, A., Hernandez, M., & Sebastian-Galles, N. (2008). Bilingualism aids conflict

resolution: evidence from the ANT task. Cognition, 106(1), 59-86.

Crystal, D. (1997). English as a global language. Cambridge, UK: Cambridge

University Press.

Dehnadi, S., & Bornat, R. (2006). The camel has two humps (working title). School of

Computing, Middlesex University, UK.

Détienne, F. (2002). Software design: cognitive aspects. New York, NY, USA.:

Springer-Verlag New York, Inc.

Emmorey, K., Luk, G., Pyers, J. E., & Bialystok, e. (2008). The Source of Enhanced

Cognitive Control in Bilinguals: Evidence From Bimodal Bilinguals.

Psychological Science in the Public Interest, 19(12), 1201-1206.

Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the

Efficiency and Independence of Attentional Networks. Journal of Cognitive

Neuroscience, 14(3), 340–347.

Green, D. W. (1998). Mental control of the bilingual lexico-semantic system.

Bilingualism: Language and Cognition, 1, 67-81

Grosjean, F. (1992). Another view of bilingualism. In R. Harris (Ed.), Cognitive

Processing in Bilinguals. Amsterdam: North Holland.

Hernandez, A. E., Dapretto, M., Mazziotta, J., & Bookheimer, S. (2001). Language

switching and language representation in Spanish-English bilinguals: an fMRI

study. Neuroimage, 14(2), 510-520.

51 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Hernandez, A. E., Li, P., & MacWhinney, B. (2005). The emergence of competing

modules in bilingualism. Trends Cogn. Sci. , 9(5), 220–225.

Hilchey, M. D., & Klein, R. M. (2011). Are there bilingual advantages on nonlinguistic

interference tasks? Implications for the plasticity of executive control processes.

Psychon Bull Rev, 18(4), 625-658.

Hockett, C. F. (1960). The origin of speech. Scientific American, 203, 88-96.

Huttenlocher, P. R. (2002). Neural plasticity: The effects of environment on the

development of the cerebral cortex. Cambridge, MA: Harvard University Press.

Ianco-Worrall, A. D. (1972). Bilingualism and Cognitive Development. Child

Development, 43(4), 1390-1400.

Jarvis, S. (2009). Lexical transfer. In A. Pavlenko (Ed.), The bilingual mental lexicon:

interdisciplinary approaches. Clevedon, UK: Multilingual Matters.

Kessler, C., & Quinn, M. E. (1980). Positive effects of bilingualism on science

problem-solving abilities. In J. E. Alatis (Ed.), Current issues in bilingual

education: Proceedings of the Georgetown Roundtable on Languages and

Linguistics. Washington, DC: Georgetown University Press.

Kessler, C., & Quinn, M. E. (1987). Language minority children’s linguistic and

cognitive creativity. Journal of Multilingual and Multicultural Development, 8,

173–186.

Kokol, P., Podgorelec, V., Zorman, M., Kokol, T., & Njivar, T. (1999). Computer and

Natural Language Texts - A Comparison Based on Long-Range Correlations.

Journal of the American Society for Information Science, 50(14), 1295-1301.

Kuhl, P. K. (2004). Early language acquisition: cracking the speech code. Nat Rev

Neurosci, 5(11), 831-843.

52 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Lehrer, R., & DeBernard, A. (1987). Language of learning and language of computing:

The perceptual-language model. Journal of Educational Psychology, 79(1), 41–

48.

Liao, Y. K. C., & Bright, G. W. (1991). Effects of computer programming on cognitive

outcomes: A meta-analysis. Journal of Educational Computing Research, 7(3),

251–268.

Luk, G., Anderson, J. A., Craik, F. I., Grady, C., & Bialystok, E. (2010). Distinct neural

correlates for two types of inhibition in bilinguals: response inhibition versus

interference suppression. Brain Cogn, 74(3), 347-357.

Martin-Rhee, M. M., & Bialystok, E. (2008). The development of two types of

inhibitory control in monolingual and bilingual children. Bilingualism:

Language and Cognition, 11(01).

Meisel, J. (1989). Early differentialation of languages in bilingual children. In K.

Hyltenstam & L. Obler (Eds.), Bilingualism across the lifespan. Aspects of

aquisition, maturity and loss. Cambridge, UK.: Cambridge University Press.

Murnane, J. (2006). Programming Languages for Beginners: A Comparison of Textual

and Graphic Programming Environments for Novice Programmers. University

of Melbourne, Melbourne.

Murnane, J. S. (1993). ￼The psychology of computer languages for introductory

programming courses. New ideas in psychology, 11(2), 213–228.

Norman, K. L. (2008). Cyberpsychology: An Introduction to Human-Computer

Interaction. New York: Cambridge University Press

Ormerod, T. (1990). Human Cognition and Programming. In J. M. Hoc, T. R. G. Green,

R. Samurçay & D. J. Gilmore (Eds.), Psychology of Programming. (pp. 63–82).

London: The European Association of Cognitive Ergonomics and Academic

Press.

53 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Palumbo, D. B. (1990). Programming Language/Problem-Solving Research: A Review

of Relevant Issues. Review of Educational Research, 60(1), 65-89.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York,

NY: Basic Books.

Pascual-Leone, A. (2001). The Brain That Plays Music and Is Changed by It. Annals of

the New York Academy of Sciences, 930: 315–329., 930, 315–329.

Pavlenko, A., & Jarvis, S. (2002). Bidirectional Transfer. Applied Linguistics, 23(2),

190–214.

Pea, R. D. (1983). Logo Programming and Problem Solving. [Technical Report No.

12.]. New York: Center for Children and Technology Bank Street College of

Education.

Pea, R. D., & Kurland, D. M. (1984). On the Cognitive Effects of Learning Computer

Programming. New Ideas Psychol, 2, 137–168.

Peal, E., & Lambert, W. (1962). The relation of bilingualism to intelligence.

Psychological Monographs, 76(546), 1–23.

Peppler, K. A., & Warschauer, M. (2011). Uncovering Literacies, Disrupting

Stereotypes: Examining the (Dis)Abilities of a Child Learning to Computer

Program and Read. International Journal of Learning and Media, 3(3), 15-41.

Philipp, A. M., & Koch, I. (2009). Inhibition in language switching: what is inhibited

when switching between languages in naming tasks? J Exp Psychol Learn Mem

Cogn, 35(5), 1187-1195.

Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., .

. . Silver, J. (2009). Scratch. Communications of the ACM, 52(11), 60.

Ricciardelli, L. A. (1992). Bilingualism and cognitive development in relation to

threshold theory. Journal of Psycholinguistic Research, 21, 301–316.

54 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Sleeman, D., Putnam, R. T., Baxter, J., & Kuspa, L. (1986). Pascal and High-School

Students: A study of errors. Journal of Educational Computing Research.

Special issue on Novice Programming, 5–23.

Soloway, E., & Spohrer, J. (1989). Studying the Novice Programmer. Hillsdale, NJ:

Lawrence Erlbaum Associates.

Spelke, E. S. (2003). What makes us smart? Core knowledge and natural language. In

D. Gentner & S. Goldin-Meadow (Eds.), Language in Mind: Advances in the

Investigation of Language and Thought. Cambridge, MA: MIT Press.

Stern, Y. (2002). What is cognitive reserve? Theory and research application of the

reserve concept. J. Int. Neuropsychol. Soc., 8, 448–460.

Tao, L., Marzecova, A., Taft, M., Asanowicz, D., & Wodniecka, Z. (2011). The

efficiency of attentional networks in early and late bilinguals: the role of age of

acquisition. Front Psychol, 2, 123.

Thierry, G., & Wu, Y. J. (2007). Brain potentials reveal unconscious translation during

foreign-language comprehension. Proc Natl Acad Sci U S A, 104(30), 12530-

12535.

Tremblay, G. P., & Sorenson, P. G. (1986). The Theory and Practice of Compiler

Writing. New York: McGraw-Hill.

Waldie, K., Badzakova-Trajkov, G., Milivojevic, B., & Kirk, I. (2009). Neural activity

during Stroop colour-word task performance in late proficient bilinguals: a

functional Magnetic Resonance Imaging study. Psychology and Neuroscience,

2(2), 125-136.

Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio,

TX: Harcourt Assessment.

Weinberg, G. M. (1971). The Psychology of computer programming: Van Nostrand

Reinhold.

55 COMPUTER PROGRAMMING & THE BILINGUAL ADVANTAGE

Witschital, P. (1995). TRAPS – An intelligent tutoring environment for novice

programmers. In K. F. Wender, F. Schmalhofer & H.-D. Böcker (Eds.),

Cognition and computer programming. Norwood, New Jersey: Ablex

Publishing Corporation.

Woollett, K., & Maguire, E. A. (2011). Acquiring “the Knowledge” of London's Layout

Drives Structural Brain Changes. Current Biology, 21(24), 2109-2114.

Yelland, G. W., Pollard, J., & Mercuri, A. (1993). The metalinguistic benefits of limited

contact with a second language. Applied Psycholinguistics, 14, 423-444.

	

